IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Connection between Yangian symmetry and the quantum inverse scattering method

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 7903
(http://iopscience.iop.org/0305-4470/29/24/015)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:07

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gern9 (1996) 7903-7915. Printed in the UK

Connection between Yangian symmetry and the quantum
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Abstract. The quantum nonlinear Sabdinger model with two-component fermions exhibits

a Yangian symmetry when considered on an infinite interval. We construct the generators of
the Yangian using Dunkl operators. We show an equivalence between the monodromy matrix
constructed from the Dunkl operators and that of the quantum inverse scattering method. Under
the Yangian algebra the space of states with a fixed particle number forms a tensor product
representation of fundamental representations.

1. Introduction

The spin generalizations of the Calogero—Sutherland models [1, 2] and the Haldane—Shastry
spin chains [3, 4] have played a prominent role in the recent development of the theory of
guantum integrable models. The models were shown [1, 5] to exhibit a Yangian symmetry
[6]. This Yangian symmetry can be derived from a representation of the degenerate affine
Hecke algebra [1]. One of the important features of these models is that the Yangian
symmetry coexists with the periodic boundary condition (PBC), while in other quantum
models solved by the Bethe ansatz the Yangian symmetry is broken by the PBC. Even in
such cases the Yangian symmetry survives in the limit of an infinite interval. For example,
the Hubbard model on the infinite interval has the Yangian symmetsi(¥j) & Y (sl(2))
[7] and similar discussions on the degenerate affine Hecke algebra can be developped [8].
In this paper we consider the quantum nonlinear 8dimger model with spirizl-fermions
(8-function fermion gas) with repulsive interaction [9-11]. It possesses a trivial sl(2)
symmetry, and when we consider the model on a finite interval the sl(2) symmetry is
possibly the only symmetry of it. However, when considered on an infinite interval, the
model gains a larger symmetry, the Yangian symmetry Y(sl(2)), and therefore its spectrum
is highly degenerate. We construct a representation of the generators of Y(sl(2)) following
[1,8]. First we introduce a representation of the degenerate affine Hecke algebra. The
representation [12—-14] is expressed in the form of Dunkl operators. Using it we obtain
a monodromy matrixl" (u) satisfying the exchange relation (sometimes, the Yang—Baxter
relation),

Rog (u — v)To(u)Ty (v) = To (v)To(u) Roo (0 — v) (1.1)

whereu, v are spectral parameters. Then we find the generators of Y(sl(2)) in the expansion
of the monodromy matrix. Since the Hamiltonian of the quantum nonlineard8ttyer
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model of spin% fermions is found in the quantum determinant of the monodromy matrix,
this model is related to the Yangian Y(sl(2)).

On the other hand, there is another monodromy maiftix) for the model. It is
constructed by the quantum inverse scattering method (QISM) [15, 16]. This monodromy
matrix is a 3x 3 matrix whose elements are second-quantized operators, while the
monodromy matrix made from the Dunkl operators is & 2 matrix with elements of
first-quantized operators. Though these two matrices are far from alike at first sight, we
can show that a % 2 submatrix of the QISM monodromy matrix is identical with the
monodromy matrix made from the Dunkl operators. This is a main result of this paper.

As an application of this remarkable relation, we consider the Yangian representation
which n-particle states form. We find that the QISM states of a fixed particle number
transform under the Yangian algebra as a tensor product representation of fundamental
representations, which is quite natural with the physical meaning of the coproduct. Since
this representation is proved to be irreducible, all the states with a fixed particle number can
be obtained from the Yangian highest weight state, which is a plane wavestate of up-spin
particles only. In this way, we obtain a simple description of particle states.

This paper is organized as follows. In section 2 we present a monodromy matrix
satisfying the exchange equations out of a representation of the degenerate affine Hecke
algebra. Then the generators of the Yangian Y(sl(2)) are constructed from the monodromy
matrix in the usual way. Section 3 relates this Yangian symmetry with the quantum nonlinear
Schibdinger model of spin}- fermions. In section 4 we explain the QISM for the model
on the infinite interval, introducing another monodromy matrix. An equivalence between
the two monodromy matrices is established in section 5. As an application we investigate
the Yangian representations of particle states in section 6. The last section is devoted to
concluding remarks.

2. Representation of the degenerate affine Hecke algebra and the Yangian Y(sl(2))

The degenerate affine Hecke algebra has proved to be quite useful in the theory of quantum
solvable models. The degenerate affine Hecke algebra is defined by two sets of generators,
dii=1...,n)andK;;1(i =1,...,n—1), satisfying the following relations;

Kiiv1Kiv1i+2Kiiv1 = Kiv1ir2Kiiv1Kit1iv2 (2.1)

Kig=1 (2.2)

[Kiit1,di] =0 k#i, i+1 (2.3)

Kiijad; — diy1Kiip1 = —ic (2.4)

[di.dj] =0 (2.5)
wherec is a constant. The extra facteti on the RHS of equation (2.4) is introduced for
later convenience. Clearly the operatds, 1(i = 1,...,n — 1) generate the symmetric
group S,. We consider a representation of this algebra acting on the space of functions
of n variablesx, ..., x,. The operatoiK;; 1 is represented by a permutation of variables
{xl’ AR ‘xn}l

(Kll+1f)(-x17 ooy Xiy -xi-‘rla sy xn) = .f(xl’ ey xi+1a KXiygeuns xn) (2'6)

and the operatad; is represented by the differential operator (Dunkl operator) [12—-14];

.0
di = —i

3)(,'

—icZ@(xj —xi)K,-j—i—icZ@(xi —x)K;;. (2.7)

J(=>i) J(<i)
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Hered(x) is the step function;

1 x>0
0(x) = % x=0 (2.8)
0 x < 0.

We can easily verify that these operators satisfy the defining relations (2.1)—(2.5) of
the degenerate affine Hecke algebra. From the physical viewpoint we shall regard this
representation space as a space of wavefunctiongpafticles with coordinates, . .., x,.
We assume that each particle has a spitaking two valuesy; =1, |.

It is convenient to introduce a projection as

JT(OK,‘J') = —7T(0)Pl'j (29)

whereP;; exchanges the spins of particieand j and O is an arbitrary operator. In physics,
this operation means a projection onto the subspace of fermionic wavefunctions. Note that
P;; commutes withKy; and withd,. We apply the rule (2.9) repeatedly until &;; are
eliminated. Using this projection, we can construct a monodromy matrix which satisfies the
exchange relation and preserves the space of fermionic wavefunctions.

The monodromy matriXo(«) is defined by

To(u) = <1+ e For ) . <1+ e Fon ) (2.10)
u—d u—d,
To(u) = m(To(u)) (2.11)

where the subscript ‘0’ indicates that it operates upon the auxiliary space indexed as zero.
The exchange relation (1.1) takes the form;

(u — v +icPoy)To(u) Ty (v) = Ty (v)To(u)(u — v + icPog). (2.12)
A proof of this exchange relation reduces to the following two relations;

( — v 4 icPop) To(u) Ty (v) = To (v) To(u) (u — v + ic Pog) (2.13)

7 (To(w) Ty (v) = 7 (To(w) 7 (To (v)) (2.14)

equation (2.13) holds since the operatdrsommute with each other and with;. For a
proof of equation (2.14), it is sufficient to show

7(Kii11To () = = Piipam (To (v)) (2.15)

which can be proven as in [1]. Then, the monodromy matrix (2.11) with (2.10) satisfies the
exchange relation (2.12).

Next we shall construct a representation of the Yangian algebra out of the above
monodromy matrix. Since the particles have séjrthe Yangian algebra Y(sl(2)) emerges
in this case. The Yangian Y(sl(2)) is generated by six generadg(a = 1,2,3,k =0, 1)
satisfying [6, 17]

[06. Ol = £ Q5 (2.16)
[05, 011 = 05 (2.17)
105, 041.106. 091 +1[05. 091.10%. 041

= AE(ACRSE pedk g Actiels f0 (06, 05, 0F) (2.18)
where A is a non-zero constantf?’ = i is the structure constant of sI(2) witf’

being the totally antisymmetric tensor, and
Aabcdef — fadkfhelfcfmfklm' (219)
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We use the convention that a summation is performed over any indices appearing twice.
The bracket } in (2.18) indicates the symmetrized product;

1
{x1, ..., xp} = o} Z Xop - Xg,, - (2.20)
oeS,
Using the exchange relation (2.12) we get a representation of the Yangian Y(sl(2)).
The generators of Y(sl(2))d}. k = 0,1,a = 1,2, 3) are found in the expansion of the
monodromy matrix with respect to the spectal parameter

1
To(w) = 1+ic ) W(le +20418) (2.21)
k=0

where 2§ are the Pauli matrices antlis the 2x 2 identity matrix, both acting on the
auxiliary space. Hereafter we shall omit the subscript ‘07yiux) unless it is necessary.
The constant in equations (2.16)—(2.18) is determinedias- ic. The explicit forms of
the generators are

Q5= (2.22)
=1
B N, O ic abeobc . den—=1)
04 = —|j;tja7i+§;s(xi—xj)f 71+ 0 (2.23)
where 2} is the Pauli matrix acting on thgth spin ands(x) is the signature function,

* x#0

e(x) ={ |« (2.24)
0 x =0.

3. Conserved operators of the quantum nonlinear Schidinger model

Given a monodromy matrix satisfying the exchange relation (2.12), we can construct an
operator commutable with every component of the monodromy matrix. Such an operator,
known as the quantum determinant [15], is given by

Det, Tw) = Ty1(u — ic)ng(u) — To1(u — iC)T]_z(u) (31)
whereT,z(u)(a, B = 1, 2) are the elements of the monodromy matfixu),
o Tua(w)  Tro(u)
T = <T21<u> Tzz(u))' (3-2)

It is easily evaluated to be of the following compact form;

An(u + ic)) _ Au(utic)

~ 3.3
A, (u) Ap(u) 3:3)

Det, T'(u) = n(

where A, (u) = [T_y(u —dj) and A, (u) = 7(A,(u)). A straightforward calculation also

shows that the operataisn(u) commutes withK;; .1, P;; 11 andd;, and then we get
[Au(), A, ()] =0 (3.4)
[An(u), Top(v)] =0 (3.5)
[A,(u), Ay(v)] = 0. (3.6)
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We expandA, (u) as

Anw) = (-1 Cu" T = Cou" — Co" 4 -+ 4 (<1 C,. 3.7)
j=0
Note thatC; andC;(i # j) commute due to (3.6). The first three 6f are calculated as
Co=1 Ci=P Cr = 3(P?*— H) (3.8)
where
A .9
P=— — (3.9)
=7 9xi
. ", 92 Z
H=- — + 2c8(x; — x;j). (3.10)
i=1 dx} 1<i<j<n

Assumingc to be real, we notice that the opera’rlélr is the first-quantized version of the
Hamiltonian of the quantum nonlinear Sédinger model for two-component fermions.
The operatorP indicates the total momentum. Therefore, we have obtainednserved
operatorsCy, ..., C, of the quantum nonlinear Sabdinger model for two-component
fermions including its Hamiltonian. Since they are in involutio@;,[C;] = 0, the model
is integrable. From equation (3.5) we deduce

[H.081=0  [H,0{]1=0 (3.11)
[P,05]l=0 [P, Q7] =0. (3.12)
Relations in (3.11) show that the model exhibits the Y(sl(2)) symmetry.
To conclude this section, we shall perform the second-quantization of the above operators

in order to relate them to the QISM operators. ket{x)(a =41, |) denote fermionic field
operators satisfying canonical anticommutation relations;

[P0 (). 5 (D)4 = Sapd (x — )
[fa(X). M)+ =0 (@.B=1.1). (3.13)

The vacuum|0) is defined asgp,(x)|0) = 0. The first three conserved operators for
the quantum nonlinear Saddinger model of spin} fermions are given by the following
expression;

N = /dxqu;(x)qﬁa(x) particle number (3.14)
P =i / dx gbl(x)aiqba(x) total momentum (3.15)
X
R T
b /dx {8% e + cd));(]si(]ba(f)ﬁ} Hamiltonian (3.16)
dx 0x
We can also derive the second-quantized form of Yangian generators as
04 = f dxtf, ¢k (1) u (x) (3.17)

. Qg
04 = _|/dnga¢;%
— [ @ dvets — 0 6oL 080 + 5 (T =108 (38)

where 2¢ are the Pauli matrices.
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4. QISM of the nonlinear Schrodinger model on the infinite interval

We shall investigate the connection between the Yangian symmetry and the QISM. The
QISM for the model (3.16) is formulated as follows [16]. Hereafter we asstimé), i.e.
the repulsive interaction. The auxiliary linear equation reads as

0 ~ -
S Tyl = Lo T x, i) - 4.2)
T(x, ylk)my = I3 (4.2)
is 0 i/cpy(x)
L(x, k)= 0 is ivepy (x) | . (4.3)
—ieplt) —ivep ) i

Here : : indicates the normal ordering ahds the 3x 3 unit matrix. We regard 83 matrices
appearing here as supermatrices where the eleniénis, (1, 2), (2,1), (2, 2), (3, 3) are
bosonic operators and the others are fermionic ones. Then the monodromy Tiérian
the infinite interval is defined as

i e iz 017 € 0 0
T(k):xILmoo|: 0 el 0 :|T(x,y|k)|: 0 €2 0 } (4.4)
0 0 d& 0 0 el
We express the elements 6ik) as
) Anr(k) Ay (k) By(k)
T (k)

y——00

App(k)y Ay (k) Byk) (4.5)
Cy(k)y Cyk) D(k)
Itis possible to derive the commutation rules among the operdigi&), B, (k), C, (k),

D(k). Let ®, denote the tensor product in the sense of supermatrices, i.e.
(A ®, B)ij,kl — Aikle(_1)(p(i)+P(k))P(j) (4_6)

where p(1) = p(2) = 1, p(3) = 0. The monodromy matri¥ (1) satisfies the following
generalized exchange relation [16];

Ry(u— [T ) ® TW)] =I[Tw) Qs Tw)]R_(u —v) 4.7
where
2 .
1 —i - g -1 g y
Relu—v) =) < A= YA ———— ®e”>
Q=1 u—vu—v-—Ic u—v-—Ic
; 2 o 3 a3 i —vtic & 03 @ o3
:l:lyns(u—v);(e e —eQRe )+ e )ZZ Re
1 2 3i i3 1 55 33
7.261(861 +——e7 e (4.8)
u—v-—Ic i1 u—uv

In the above,e’/ is a 3x 3 matrix with elementse’’),, = §;,8;, and ® is a matrix
tensor product in the usual sense. Taking matrix elements from equation (4.7), some of the
commutation relations, which will be used in later discussions, are

D(k)D(p) = D(p)D(k) (4.9)

k —
CuoD(p) = = T D(PICath) (4.10)

k — i
Cal)Cp(p) = =L Cy(p)Calk) — ———Co(P)Cph).  (4.11)
—p—ic k—p—ic
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Relation (4.9) implies thatD(k) is a generator of conserved operators including the
Hamiltonian H. Indeed, the expansion d(k) in powers ofk—* yields

pw =1+ 4 Lier~ CRh - 1)
T TR T2
1( . s i3 1
+ 5 fiel = PPW -1 - TN - -2 +0( 5). @12
Explicit forms of the operators/, P and H have been given in (3.14)—(3.16).

We now define an operatoRg(k), which is a quantum analogue of the reflection
coefficient, as

Rl (k) = ﬁcaac)D—l(k) a=1 . (4.13)
The operatorRl(k) satisfies the commutation relations,

[N, R (k)] = R} (k) (4.14)

[P, Rl (k)] = kR] (k) (4.15)

[H, Rl (k)] = KR} (k). (4.16)

These relations indicate that this operator plays a role of the creation operator of a
quasiparticle with momenturh and energy?.

5. Second-quantization of the monodromy matrix

From the second-quantized forms of D&t(x), O and Q¢ in section 3, we can in principle
expressQ?, Q¢ and the monodromy matrif () in a second-quantized form (see the
appendix). Then, the following theorem holds.

Theorem 1.

Taﬂ (I/l) = Aaﬂ (I/l) (51)
Det, T (u) = Det, A(u) = D(u) (5.2)

whereT (u) is regarded as a second-quantized form of the monodromy matrix (2.11).

These relations are quite surprising sirft@:) and A(u) are far from alike. For a proof of

the theorem there is no need to second-quantize the full formulaiof. The proof goes

as follows. First we see thdt,s(u) and A.s(u) satisfy the same exchange relation (2.12).
This indicates that two Y(sl(2)) representations are derived respectively from these two
monodromy matrices. Next we check th@f, Q¢ and the quantum determinant obtained
from T,4(u) and those fromAg (1) are equal. Since the Yangian Y(gl(2)) is generated by
0§, 04, and the quantum determinant (see the appendix), we conclude that the full formulae
for T,ps(u) and A.s(u) are equal.

Proof. To begin with, we see that,z (1) andT,z(«) obey the same commutation relations;
(u—v)[Ap, (W), Aps (V)] = ic{Any (V) Aps () — Agy (W) Aps(v)} (5.3)
(I/l - U)[Tﬂ)/ (M)v Taé(v)] = ic{Tay(U)TﬁB(u) - Tay (M)Tﬂé(v)} (54)

Equation (5.4) is equivalent to the exchange relation (2.12), and equation (5.3) is obtained
by extracting a submatrix of a generalized exchange relation (4.7).
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Secondly we compare the two sets of Y(sl(2)) generators derived respectively from
Aup(u) and Tyg(u). By partial integrations of g (k);

[o¢] n n
Aup(k) = 8up + _(—=0)" / [Tdvi[Tdei0Gn <yn<---<z<y)
n=1 j=1 j=1

X1, (20) .. 9, @) )by ) - - by (72 (pEEETEN (5.5)
we get

] 1 i 0
Aupk) =8 + / dv ) ()b (1) + kz{c/dw;,(x)ax%(x)

. 1

~ [ [avou- y>¢;<x>¢;<y>¢y<y>¢a<x>} e (ks) | (5.6)
Since the matrixi,z (1) satisfies an exchange relation (2.12), we can deduce a representation
of Y(sl(2)) from A1) as well. We put

L= 1 ~
Aw)=1+icy W(le—k 20¢1%) (5.7)
k=0

where A(u) is regarded as a 2 2 matrix with elementsi,g (). Then it follows that
03 = [ arig, g0, () = 03 (5.8)
~ . d [ ,
0f = —i f e 15,6 () ;b () = g / dx dy e(y — )15, &L ()P (1) e (1) ()

+ (W =105 = 04, (5:9)

Therefore, two representations of Y(sl(2)) deduced respectively #igp(x) and from
T.p(u) are identical.

Finally we check that the two quantum determinants calculated #gg) and T,z (u)
are identical, i.e. equation (5.2) holds. into We can show that the three operators in
equation (5.2) acting on the-particle state

W) = R} (ky) ... R] (k,)|0) (5.10)

give the same eigenvalue;

Du)|¥) = H%;k"mf) (5.11)
j=1 U
Det, A(u)| W) = ]‘[wlzkf'w) (5.12)
j=1 M
Det, T (u)|¥) = H%;kfmz) (5.13)
=1 HTH

which shows the validity of equation (5.2). Note that thparticle states (5.10) form a
complete set [11]. It is easy to show equations (5.11) and (5.12) using the commutation
relation between the QISM operators. And we have explicitly shown equation (5.13) in the
caseks, ..., k, are all distinct. We shall only sketch the outline of the proof of (5.13) since
the proof itself is quite complicated and inessential for later discussions. We first explicitly
calculate the coordinate wavefunctign(xy, ..., x,,) out of |¥). It has a well known Bethe
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ansatz form. Then we decompose it into eigenstated; @ = 1,...,n) and obtain the
following;

Wry, .. x) =y WO, ... x) (5.14)

€S,

AW (x1, ..., X)) = kg W7 (X1, ..., Xn) G=1...,n). (5.15)

Then equation (5.11) follows from the fact that D&tu) is a symmetric function of
di, ..., d, (see equation (3.3)). Thus, we have shown theorem 1. O

Utilizing the above result, we calculate commutators between the Yangian generators
and the QISM operator€, (k), D(k). For that purpose we make use of the following
commutation rules for the QISM operators;

[Aap(K), Cy (p)] = k'_—cpcﬁ(p)Aw(k) (5.16)
[Ags(k), D(p)] = 0. (5.17)
The commutators are calculated as
[09, D(k)] =0=[Q§, D(k)] | . (5.18)
[QF. Co (k)] = ki, Cp(k) —icf*"15,Cp (k) Qf + 'gc,g (k)zvtga + IECCa(k)QS (5.19)
[05, Ca(b)] = 15,Cp (k). (5.20)

Recall that D(k) is a generator of conserved operators including the particle number
N, the total momentumP, and the HamiltonianH. Of course equation (5.18) implies
equations (3.11) and (3.12) again. By putting

/ Ic -
01 =01- §(N - 105 (5.21)
the commutation rule (5.19) is cast into a simpler form
[0F. Co(k)] = kt§, Cpk) — icf** 1}, Cpk) Q. (5.22)

This redefinition(Q{ — Q‘{) does not affect the defining relations of the Yangian. If
the constant is real, all the generators of the Yangian Y(sl(2)) become Hermitian by the
redefinition. Using equations (5.18)—(5.20) we deduce

[0, RL()] = ki, Ry (k) — icf 1}, Ri(k) O
[08. RL(K)] = 15, R} (k).

These relations play an essential role in discussing the representations of the Yangian in the
next section.

(5.23)

6. Yangian representations

We note that the vacuun®) is invariant under this Yangian representation;
Qilo)=0  ofj0)=0. (6.1)

Let n denote the number of particles. We can consider that the spacepafticle
states is spanned by the stateszofjuasiparticlesR], (k1) ... R} (k,)|0)(e; =1, ) . The
guasimomentdk;} should be real since imaginary quasimomenta cause a divergence of a
wavefunction afx| — oo.
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In then = 1 sector we have
Q4R (K)|0) = 15, R} (k)[0) (6.2)
0 R} (k)|0) = kg, R}, (K)]0). (6.3)
The action on‘{ on the 1-particle states istimes that ofQg. We call this representation

the fundamental representatid¥y (k), following Chari and Pressley [18].
In then = 2 sector we get

Q4R! (kD) RY (k2)[0) = (t58,8,0 + 8pat’,) R} (k)R (k2)|0) (6.4)
04 Rl (k)R (k2)10) = (kat$, 8,0 + kaSpatly, — icf ™1, 1<, ) RE (k1) R} (k2)|0). (6.5)

This representation is easily identified as a tensor product represeniatidn ® Wi(ky),
where the comultiplicatiom\ is defined as

A(Qp) =05®1+1® 0 (6.6)
AQY) = 0¢ ®1+1® QY —icf™ 0L ® Q5 (6.7)
Similarly, the n-particle statesk], (k1) ... R} (k,)[0)(e; =1, ) transform under the
Yangian Y(sl(2)) as a tensor product representation

Wilky) @ -+ - ® Wilky). (6.8)

Since the quasimoment; } are all real, these representations are irreducible unde¢2y)sl
[18] while they are not under the subalgebra sI(2).

Because of this irreducibility, using Yangian generators we can construct ali-the
particle states out of the Yangian highest weight state

Rl (ky) ... R (k,)10). (6.9)
By induction we can show that (6.9) is equal to
¢l (ke) . .. ¢} (k)I0). (6.10)

This equality is quite natural since the repulsive contact interaction never occurs between
up-spin particles due to the Pauli principle. In conclusion, all thgarticle states can

be constructed out of the state (6.10) by using the Yangian generators (3.17) and (3.18).
The interesting point is that these three formulae are written in terngs(bf, not R; (k).
Therefore, in order to describe all theparticle states, there is no need to ugek).

7. Concluding remarks

In the present paper we have dealt with the quantum nonlineai@olger model with
two-component fermions. We think it is possible to extend the above discussions to the
multicomponent quantum nonlinear Sétimger models and to other models solvable by the
QISM. A wide applicability of this method would give us a deeper insight into the quantum
solvable models. We make a remark on a particularity of the Hubbard model. A Yangian
symmetry was found [7] for the Hubbard model. A similar analysis using the degenerate
affine Hecke algebra is possible, but its Hamiltonian appears, i) in the form separated
into the left- and the right-hopping parts [8]. It prevents us from the further investigation
of the Hubbard model along this method.

We have discussed the connection between the Yangian symmetry and the QISM.
Especially, equations (5.1) and (5.2) are quite interesting since the two monodromy matrices
T(u) and T (u) (A(u) is a submatrix ofT' (1)) have completely different origins. This
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interesting correspondence should be a consequence of a more profound structure of the
model, which is left as a future problem. On the analogy with this model, we suggest
that in other integrable models the QISM on the infinite interval would present an infinite-
dimensional symmetry, e.g. the Yangian symmetry or the quantum affine algebra symmetry.

We have also presented a Y(sl(2)) representation of the particle states of the model. As
noted in the previous section, the irreducibility of the Yangian representations of the particle
states allows us a simple description of the particle states, which we believe is useful for
further investigations of the model.
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Appendix. Derivation of Y(sl(2)) from the exchange relation

We begin with the exchange relation for the<2 transfer matrixt (u),
((u = v) +hPoo) To(u) Ty (v) = To (v) To(u) ((u — v) + h Poo) (A1)

where P denotes the permutation operator definedAt ® y) = y ® x. Extracting the
component of the above relation, we get

=0T W), T ()] = h[T7P )T (u) = T @T* (v)]. (A.2)
Assuming that liny,_. 7 (u) = 1, we expandr (x) by u™1;

rw=1+"3"1
u)= un:oun n+1

— hen 1 0 a_a

wherec?(a = 1, 2, 3) denote the Pauli matrices and we adopt the convention that we take
a summation over the repeated indices. Substituting it to equation (A.2), we have

[Tlaﬂv Tn)//o — SaanVﬁ _ v Tnolp (A.4)
(1,00, T = 1130, T2 = R(LP T30 — TP T). (A5)
In order to find the Y(sl(2)) structure we change the matrix basis{ihte“} and we get
[05. 091 =0 (A.6)
[0, 01 = F™ 0y, (A7)
[0n. 091 =0 (A.8)
[0, 0,]1=0 (A.9)
(05, il =107, Q5] (A.10)
[0}, 051 =100, 0;] (A11)
(01 O3] =[O0 Q5 yal =R f*(Q5 05 — 0,0 (A.12)

h
[Qn41 Q11 = [0 Qs = 5 7(210;, = 05,0 (A.13)
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From these equations we can derive a recursion formulafor
O = — 070, 1 + Q5001 — 0 100) (A.14)
A recursion formula forQ® should be studied separately since it is related to the existence
of a centre of the whole algebra.
It is well known that the quantum determinant,
Det, T (u) = T w)T?*(u — h) — T2u)T?(u — 1) (A.15)

commutes with every component of the transfer maltrix). Thus, the coefficients of the
expansion

AN 1
Det, T (u) = 1+;;ﬁan (A.16)
belongs to the centre of the algebra. The first few of them are
ap =209 (A.17)
a1 =207 ~h Q505 +h Q500 +h Qg (A.18)
az = 205 +7* Qg + 2107 + R*(Q500 — Q500) +h(Qp07 — Q507 (A.19)

The general formula fou, is

n—1 n—1n—q-1 . .
an:2Q2+Z(nfm)W—mQ9,,+ > (” 4 1)W—P—4<Q2Q2—Q‘;Q‘;).
m=0

¢=0 p=0 p
(A.20)
We can rewrite this equation in the form of the recursion formulad@r
1 1 n—1 n
0 __ — _ = Tn—m 0
0, = 5 2;<n _m>h o)
1 |t n—q-— 1 Tn—p—q 00 a na
-5 ZO ) ) R P00 Q0 — 0409). (A.21)
q=0 p=

Using equations (A.14) and (A.21) we can expregks and Q° in terms of 03, O
anda,. The algebra generated g5, Q4 andaq, is called the Y(gl(2)) Yangian, and that
generated byD§ and Qf is called the Y(sI(2)) Yangian. From equations (A.14) and (A.21),
a knowledge ofQg, 09, a, is sufficient for calculating the whole formula @f(u).
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